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ABSTRACT

This paper describes the development of a statistical forecasting method for summer monsoon rainfall over Thailand.
Predictors of Thailand summer (August–October) monsoon rainfall are identified from the large-scale ocean–atmospheric
circulation variables (i.e. sea-surface temperature and sea-level pressure) in the Indo-Pacific region. The predictors
identified are part of the broader El Niño southern oscillation (ENSO) phenomenon. The predictors exhibit a significant
relationship with the summer rainfall only during the post-1980 period, when the Thailand summer rainfall also shows
a relationship with ENSO. Two methods for generating ensemble forecasts are adapted. The first is the traditional linear
regression, and the second is a local polynomial-based nonparametric method. The associated predictive standard errors
are used for generating ensembles. Both the methods exhibit significant comparable skills in a cross-validated mode.
However, the nonparametric method shows improved skill during extreme years (i.e. wet and dry years). Furthermore, the
models provide useful skill at 1–3 month lead time that can have a strong impact on resources planning and management.
Copyright © 2005 Royal Meteorological Society.
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1. INTRODUCTION

Seasonal forecasts of Thailand summer monsoon rainfall can have significant value for resources planning and
management, e.g. reservoir operations, agricultural practices, and flood emergency responses. In particular,
increased population stress on the Chao Phraya River basin, one of the key regions for Thailand’s socio-
economic well being, is resulting in water quantity and quality problems. To mitigate this, effective planning
and management of water resources is necessary. In the short term, this requires a good idea of the upcoming
monsoon season rainfall, i.e. a good seasonal forecast. In the long term, it needs realistic projections of
scenarios of future variability and change. There is no known long-lead forecast of Thailand summer monsoon
rainfall or stream flows. As a result, much of the water resource planning in Chao Phraya basin and in Thailand
in general is near term, i.e. responding to near-term weather forecasts.

There is an extensive literature of studying the variability of Indian summer monsoon, both from obser-
vational data (e.g. Walker, 1924; Pant and Parthasarathy, 1981; Rasmusson and Carpenter, 1983; Fein
and Stephens, 1987; Webster et al., 1998) and from modelling studies (e.g. Ju and Slingo, 1995; Meehl
and Arblaster, 1998). These studies have identified a strong link between El Niño southern oscillation
(ENSO) and the Indian summer monsoon. Statistical methods for forecasting the Indian monsoon rainfall
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use this ENSO–monsoon relationship. For example, Krishna Kumar et al. (1995) and Shukla and Mooley
(1987) identified several predictors of the Indian monsoon and developed statistical models for forecast-
ing — almost all of the predictors are various facets of ENSO. With this framework of predictors, statistical
models using time series (Thapliyal, 1981; Rajeevan, 2001) and artificial neural network techniques (Sahai
et al., 2000) have been developed by the Indian Meteorological Department and other researchers for use in
operational forecasts.

Krishna Kumar et al. (1999a) showed that the ENSO–Indian monsoon relationship has weakened
substantially in the post-1980 period. They argue for changed ENSO characteristics and global warming
as potential causes for this weakening. This is having a strong impact on the forecasting efforts of the Indian
monsoon, as most of its predictors (mentioned above) are related to ENSO. Furthermore, Krishna Kumar et al.
(1995, 1999b) show that the Indian monsoon predictors are strongly related to the Indian monsoon only when
the monsoon itself is strongly related with ENSO. Interestingly, results from our research (Singhrattna et al.,
in press) indicated that the Thailand monsoon is more closely related to ENSO in the post-1980 period, just
when the Indian monsoon relationship with ENSO is weakening. This enhances the prospects of forecasting
Thailand monsoon rainfall.

There is little in the literature studying the variability and predictability of the Thailand summer monsoon.
Admittedly, it is much smaller in comparison with the Indian summer monsoon, but it has a significant
socio-economic impact in Thailand. There have been some studies of late on the variability of the Thailand
monsoon and rainfall over Singapore and Indonesia by Kripalani and Kulkarni (1997, 1998, 2001) and more
recently by Singhrattna (2003; Singhrattna et al., in press). Distributed hydrologic models for Chao Phraya
and Nakon Sawan river basins have been developed (Jha et al., 1997, 1998), but these are mainly for real-time
or event-based simulation of stream flow and not for seasonal forecasting.

It is not clear whether there is a seasonal forecast mechanism in place in Thailand. Unlike in the case of
the Indian summer monsoon, the Indian Meteorological Department is required to issue a seasonal forecast
of the upcoming monsoon season by the end of April. The great need and utility of a Thailand monsoon
forecast and the enhanced prospects of its predictability in recent decades serve as a strong motivation for
the present research.

We adapt two approaches for an ensemble forecast of Thailand summer monsoon rainfall in this paper.
The first is a traditional linear regression approach and the second a nonparametric technique based on local
regressions.

The paper is organized as follows. The data description and predictor identification are presented first.
The two forecasting methods are then described, followed by cross-validated model skills in forecasting the
Thailand summer rainfall. A discussion of the results concludes the paper.

2. DATA

The data used in this study are:

1. Rainfall data for the Thailand summer monsoon (August–October), and surface air temperature (SAT)
data during pre-monsoon months (March–June) averaged over three stations: Nakon Sawan (15°48′N,
100°10′E), Suphan Buri (14°28′N, 100°08′E) and Don Muang (13°55′N, 100°36′E). All of these stations
are in the west central region and in the Chao Phraya River basin. These data were obtained from
the GEWEX Asian Monsoon Experiment (GAME) project Website (http://hydro.iis.u-tokyo.ac.jp/GAME-
T/GAIN-T/routine/rid-river/longterm.html). The GAME programme, part of the global energy and water
cycle experiment (GEWEX), has done a good job of collecting and archiving data from South East Asian
countries. In general, it has been difficult obtaining long hydroclimate data from South East Asia, and
Thailand in particular. See Singhrattna (2003) for further details on these data sets.

2. Large-scale ocean and atmospheric circulation variables, such as sea-surface temperature (SST), sea-
level pressure (SLP), winds, velocity potential, were obtained from National Center for Environmental
Prediction–National Center for Atmospheric Research reanalysis (Kalnay et al., 1996). These data sets
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span the period from 1948 to date, covering the globe on a 2.5° × 2.5° grid and are available at
http://www.cdc.noaa.gov.

3. Standard ENSO indices: NINO3, NINO1 + 2, southern oscillation index (SOI) available at
http://www.cpc.noaa.gov.

4. Indian Ocean dipole (IOD) index (Saji et al., 1999). This is an index based on the SST anomaly difference
between the eastern and western tropical Indian Ocean. The index, its impact on the adjoining continental
rainfall, interactions with ENSO and teleconnections can all be obtained from the IOD home page
http://www.jamstec.go.jp/frsgc/research/d1/iod/.

3. IDENTIFICATION OF PREDICTORS

The aim in this section is to identify predictors for the Thailand summer rainfall, which can then be used in
statistical forecast models. The two main requirements for any useful predictors are (1) a good relationship with
the seasonal rainfall and (2) a reasonable lead time (i.e. months to a season). Our earlier work (Singhrattna,
2003; Singhrattna et al., in press) indicated that Thailand summer rainfall is strongly correlated with ENSO in
the post-1980 period and also with pre-monsoon (especially March–May (MAM)) land surface temperatures
representing the land–ocean thermal gradient. So, the first step is to look for a relationship with standard ENSO
indices during the pre-monsoon seasons and follow up with correlations between the rainfall and large-scale
ocean–atmospheric variables (SSTs, SLPs). This approach of correlation with large-scale ocean–atmospheric
circulation variables has been used to identify predictors for stream flows in northern Brazil (Souza and Lall,
2003) and in the Truckee–Carson river basins in Nevada, USA (Grantz, 2003).

3.1. Correlation with ENSO indices

Thailand summer monsoon rainfall was correlated with the standard ENSO indices and IOD index from
pre-monsoon seasons and also with the spring (MAM) Thailand air temperatures (SAT). The latter are believed
to be an indicator of the land–ocean thermal gradient, which is important for the strength of the monsoon
(Singhrattna et al., in press). The correlations are computed for the post-1980 period and shown in Table I.
Correlation values that are statistically significant at the 95% confidence level using a t-test (Helsel and Hirsch,
1995) are shown in bold in the table. It can be seen that SOI, the SLP-based ENSO index, shows a strong
correlation with monsoon rainfall during the concurrent season and also one or two seasons prior. The spring
land temperatures also exhibit a significant correlation, as expected. The IOD shows a strong correlation with
the monsoon rainfall at a two-season lead time. All these brighten the prospects for a long-lead forecast.

To confirm that the correlations are strong only during the post-1980 period (as in Table I), selected
predictors from pre-monsoon seasons (January–March (JFM) NINO3, May–July (MJJ) SOI, MAM IOD and
MAM SAT) were correlated with monsoon rainfall on a 21 year moving window (Figure 1). It can be seen
that the predictors show correlations with summer rainfall only in recent decades, much as the correlations
between the rainfall and ENSO (shown as a solid line between summer rainfall and ASO SOI) and seen by
Singhrattna et al. in press. Similar shifts have been seen (Miyakoda et al., 2003) in pre-monsoon signals of

Table I. Correlations (post-1980 period) between Thailand summer rainfall (August–October) and large-scale climate
indices (the 95% significance level is ±0.41. Values in bold are statistically significant at the 95% level)

JFM FMA MAM AMJ MJJ JJA JAS ASO

Nino 1 + 2 0.41 0.31 0.29 0.28 0.25 0.17 0.08 −0.06
Nino 3 0.42 0.33 0.15 −0.01 −0.13 −0.19 −0.24 −0.31
SOI 0.40 0.27 −0.07 −0.27 0.44 0.45 0.57 0.59
IOD −0.37 −0.44 −0.70 −0.55 −0.32 −0.17 −0.22 −0.34
SAT 0.30 0.51 0.48 0.34 0.20 0.10 −0.01 −0.11
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the South Asian monsoon. This suggests that the ENSO-based predictors are related to the monsoon rainfall
only when the monsoon rainfall itself is related to ENSO. Interestingly, this is similar to the finding by
Krishna Kumar et al. (1995), who show that the predictors of Indian monsoon rainfall are related to the
rainfall only during the period when the Indian monsoon is strongly related with ENSO. In the case of the
Indian monsoon this is the pre-1980 period. This is consistent with the ENSO-related circulation changes
during pre- and post-1980 periods (Krishna Kumar et al., 1999a; Singhrattna et al., in press). Land-cover
changes (Kanae et al., 2001) and decadal changes in the ENSO–monsoon relationship (Krishna Kumar et al.,
1999b; Torrence and Webster, 1999) could lead to trends in monsoon precipitation and, consequently, add to
the nonstationarity of the relationship, as seen in Figure 1.

3.2. Correlation with large-scale variables

Although, as seen above, the indices show significant correlations, we would like to check their large-scale
aspects and also see whether other, stronger predictors could be identified. To this end, the summer monsoon
rainfall was correlated with SSTs and SLPs during pre-monsoon seasons and the correlation maps are shown in
Figure 2. The shaded regions indicate correlations that are significant at the 95% confidence level. With SLPs
(Figure 2(a)) the correlations are strong in the Pacific subtropical region, indicating that a higher than normal
subtropical pressure tends to enhance the easterlies, thereby increasing the moisture transport to Thailand
and, consequently, the rainfall. Wang et al. (2003: figures 1 and 2) found similar pressure patterns in the
Pacific subtropical region to be linked with variations in the Australian and Asian monsoons. Strong positive
correlations with SSTs (Figure 2(b)) are seen in the eastern Indian Ocean and western Pacific Ocean regions
around the equator. This region is also one of the poles of the IOD index (Saji et al., 1999); hence the strong
correlation with IOD seen in Table I and Figure 1. These correlation maps indicate persistence from the spring
leading up to the monsoon season, thus providing the potential for a long-lead forecast. The solid boxes in
Figure 2 show the regions of high correlation from where the predictors will be developed in the following
sections.

3.3. Predictor selection

Based on the correlations with indices and the correlation maps with large-scale variables, predictors
with high correlations with the summer rainfall were identified. With this criterion, the selected predictors
are (1) SSTs averaged over 10.5–14.5 °S latitudes and 108–120 °E longitudes and (2) SLPs averaged over
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Figure 1. 21-year moving window correlation between Thailand summer (August–October) rainfall and selected predictors from
pre-monsoon seasons (JFM NINO3; MAM IOD; MAM SAT; May–July SOI). The dashed horizontal lines are the 95% significance levels
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Figure 2. Correlation maps of Thailand summer rainfall and pre-monsoon season: (a) SLPs; (b) SSTs. Shaded regions are significant at
the 95% confidence level

20–30 °N latitudes and 165–180 °E longitudes. Thailand SAT is also selected as one of the predictors. This
essentially captures the land–ocean gradient that gets set up by the land temperatures, especially during the
spring season before the monsoon (Singhrattna, 2003).

To check the temporal variability of the strength of the predictors to monsoon rainfall, moving window
correlations are shown in Figure 3. As expected, the predictors are correlated mainly in the post-1980 period
as in Figure 1. Furthermore, the predictors show significant correlations with the summer rainfall at a one-
to two-season lead time.

4. FORECAST MODELS

Typically, a regression (often linear) is fit between the identified predictors and a single dependent variable
(i.e. the summer rainfall). The fitted regression is then used to forecast the mean value of the variable. There
is an extensive literature for fitting and testing linear regression models, and software is readily available
(e.g. Helsel and Hirsch, 1995). Such models have been widely used for hydroclimate forecasting in the USA
(e.g. Lui et al., 1998; Cordery and McCall, 2000; Piechota et al., 2001; McCabe and Dettinger, 2002) and
for Indian monsoon forecasting (Hastenrath, 1987, 1988; Krishna Kumar et al., 1995). For forecasting a field
of a dependent variable, such as precipitation, at several locations from fields of independent variables (e.g.
tropical SST, SLP, etc.), canonical correlation analysis is typically used (e.g. Shabbar and Barnston, 1996;
Ntale et al., 2003). Below, the linear regression model is briefly described.

Copyright © 2005 Royal Meteorological Society Int. J. Climatol. 25: 649–664 (2005)



654 N. SINGHRATTNA ET AL.

0.8

0.6

0.4

0.2

C
or

rln
.

0.0

-0.2

-0.4

-0.6

1960 199019851980197519701965

Year

SOI
SAT
SST
SLP

(a) 0.8

0.6

0.4

0.2

C
or

rln
.

0.0

-0.2

-0.4

-0.6

1960 199019851980197519701965

Year

SOI
SAT
SST
SLP

(b)

0.8

0.6

0.4

0.2

C
or

rln
.

0.0

-0.2

-0.4

-0.6

1960 199019851980197519701965

Year

SOI
SAT
SST
SLP

(c)

Figure 3. Same as Figure 1, but with the predictors identified for the pre-monsoon seasons: (a) MAM; (b) AMJ (c) MJJ

4.1. Linear regression

Traditional linear regression involves fitting a linear function between the response variable (i.e. summer
rainfall) and the independent variables (i.e. predictors). They are of the form

Yt = a1x1t + a2x2t + a3x3t + . . . + ap
∗xpt + et t = 1, 2, . . . , N (1)

where the coefficients a1, a2, . . ., ap are estimated from the data, by typically, minimizing the sum of squares
of the errors; et is the error, which is assumed to be normally (or Gaussian) distributed with zero mean
and variance σ 2

e (also estimated from the data); N is the number of observations. The equations for the
coefficients, the error variance and methods for testing the goodness of the fitted model can be found in any
standard book on statistics (e.g. Helsel and Hirsch, 1995).

Implicitly, the variables are also assumed to be normally distributed. If not, they are generally transformed
to a normal distribution (e.g. log or power transform) before the model is fit. Once the model is fit (i.e.
the coefficients estimated) then, for any new value of the predictors, the model with the fitted coefficients
(Equation (1)) is used to predict the mean value of the dependent variable, say Ynew. Predictive standard error
σpe (or the standard deviation of the error of the predicted mean) is obtained from theory (Helsel and Hirsch,
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1995). Normal random deviates with a zero mean and standard deviation σpe provide the ensembles of errors,
which when added to the mean estimate Ynew results in the ensemble forecasts. This approach of using a
normal distribution with the predictive standard error was applied by Clark and Hay (2004) for generating
ensemble forecasts of stream flows in the western USA.

In the above model, if the independent variables happen to be past values of the response variable itself,
then it forms a time series model in an autoregressive framework. Hydrologists have developed and used such
models for stream flow simulation and forecasting (Bras and Iturbe, 1985; Salas, 1985; Yevjevich, 1972).

The main drawbacks of traditional linear regression models are (1) the assumption of a Gaussian distribution
of data and errors, (2) the assumption of a linear relationship between the variables, and (3) the models are
not portable across data sets (i.e. sites). Furthermore, if the model fitted is found to be inadequate then the
alternative choices are limited, and more so when the number of observations are small.

4.2. Nonparametric regression: locally weighted polynomials

Nonparametric methods provide an attractive alternative in alleviating some of the drawbacks of the
traditional linear regression. In this approach, the model is

Yt = f (xt ) + et (2)

where xt = (x1t , x2t , x3t , . . . , xpt ), t = 1, 2, . . . , N . This is similar to the linear regression model
(Equation (1)), but the function f could be linear or nonlinear, and the errors et are assumed to be normally
distributed with zero mean and variance σ 2

le. The key difference from linear regression is that the function f
is fit ‘locally’ to estimate Y . In that, the value of the function at any point xi is obtained by (1) identifying a
small number K (= αN , where α ∈ (0, 1]) of neighbours to xi and (2) fitting a polynomial of order p to the
neighbours. Neighbours are identified from the observations that are closest to xi in terms of the Euclidian
distance or another such metric (e.g. Mahalanobis distance; Yates et al., 2003). The fitted polynomial is then
used to estimate the mean value of the dependent variable. The coefficients of the polynomial are estimated
using a weighted least-squares approach. The theoretical background of the local polynomial method is
described in detail in Loader (1999), who refers to it as LOCFIT; henceforth, we will use the same terminology
in this paper.

LOCFIT also provides the local standard errors of the estimate σle and local predictive standard errors
σlpe (Loader, 1999), corresponding to σe and σpe respectively in the case of linear regression described in
Section 4.1. The steps for generating the ensembles are the same as that for the linear regression: (1) for a
new value of the predictor set, the mean value Ynew is first estimated using the LOCFIT approach described
above; (2) the local predictive standard error σlpe is estimated (Loader, 1999); and (3) normal random deviates
with a zero mean and standard deviation of σlpe when added to the mean estimate Ynew result in ensemble
forecasts.

The key parameters to be estimated are the size of the neighbourhood (K or α) and the order of the
polynomial p. These parameters are obtained using objective criteria such as the generalized cross-validation
(GCV) function or likelihood function:

GCV(α, p) =

N∑

i=1

e2
i

N
(

1 − m

N

)2 (3)

where ei is the error (i.e. difference between the model estimate and observed), N is the number of data
points and m is the number of parameters. For a suite of α and p values the GCV function is computed
from Equation (3) and the combination that gives the least GCV value is selected. For stability purposes, the
minimum neighbourhood size should be twice the number of parameters to be estimated in the model.
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Note that if a first-order (i.e. linear) polynomial is selected, and if the neighbourhood includes all the
observations (i.e. K = N or α = 1), this then results in the traditional linear regression. Thus, LOCFIT can
be viewed as a superset. We used the software LOCFIT developed by Loader, which is available on-line
(http://cm.bell-labs.com/cm/ms/departments/sia/project/locfit/index.html).

There are several nonparametric approaches to estimating the function f locally, such as kernel-based
(Bowman and Azzalini 1997), splines, local polynomials (Owosina 1992; Rajagopalan and Lall, 1998;
Loader, 1999). Owosina (1992) performed an extensive comparison of a number of regression methods, both
parametric and nonparametric, on a variety of synthetic and real data sets. He found that the nonparametric
methods handily outperform parametric alternatives. All of the nonparametric methods perform similarly, but
LOCFIT is easy to implement; hence, we adopted it in this paper.

LOCFIT has been used for several hydroclimate applications (Lall, 1995): for spatial interpolation of
precipitation (Rajagopalan and Lall, 1998); salinity modelling (Prairie, 2002; Prairie et al., 2005); stream flow
modelling (Prairie, 2002; Prairie et al., 2004); stream flow forecasting (Grantz, 2003); and flood frequency
estimation (Apipattanavis et al., 2005).

Variants of LOCFIT also provide an attractive alternative to ensemble generation. For example, the K
neighbours of an estimation point xi identified can be resampled (i.e. bootstrapped) with a weight function
that gives more weight to the nearest neighbour and less to the farthest, thus generating ensembles. Lall
and Sharma (1996) developed this approach and used it for stream flow simulation. Later, Rajagopalan and
Lall (1999) and Yates et al. (2003) extended it for stochastic daily weather generation and Souza and Lall
(2003) applied it for stream flow forecasting.

4.3. LOCFIT with resampled residuals (modified K-NN)

Frequently the errors et are not normally distributed. To address this issue a modification to LOCFIT was
developed by Praire (2002). Prairie et al. (2004,2005) applied this for stream flow and salinity modelling.
Later, Grantz (2003) demonstrated the use of this approach for stream flow forecasting on the Truckee–Carson
basin in Nevada, USA.

Prairie (2002) referred to this as the ‘modified K-NN’, and we do the same here. The modification is
described below.

Suppose an ensemble is required for a new value of the predictor xnew, and suppose that the polynomial
order p and the size of the neighbourhood K have been obtained using GCV or other objective criteria. The
steps in the modification are as follows:

1. Identify K nearest neighbours to xnew and fit a polynomial of order p. The fitted polynomial provides the
estimate of the dependent variable at all the neighbours and, consequently, the residuals.

2. The fitted polynomial from step (1) is used to estimate the mean value Ynew. (This step is just the LOCFIT
process described in the previous section.)

3. Now select one of the K neighbours of xnew, say xi and select the corresponding residual ei (already
obtained from step 1); this is now added to the mean estimate Ynew + ei , thus obtaining one of the
ensemble members. The selection of one of the neighbours is done using a weight function

W(j) = 1

j

K∑

i=1

1
i

(4)

As can be seen, this weight function gives more weight to the nearest neighbour and less to the farthest
neighbours. Repeat step 3 several times, resulting in an ensemble.

The number of neighbours for fitting the local polynomial can be different from the neighbours used to
resample the residuals (e.g. Prairie, 2002). In this study we have kept both the same. In the modification
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described above, if the number of observations N is small, then the resampled residuals (step 3 above)
provide very limited variety in the ensembles, and this is the main disadvantage.

5. MODEL EVALUATION

The models are verified in a cross-validated mode, i.e. the data (rainfall and the predictors) for a given year
are dropped out and the model(s) based on the rest of the data is (are) applied to generate an ensemble
forecast for the dropped year. This is repeated for all the years for the 1980–2000 period. Apart from visual
inspection, the ensembles are evaluated on three criteria:

1. Correlation between the observed value and the median of the ensemble forecast. This is much like
evaluating the mean forecast that would come from a standard linear regression model.

2. Likelihood function (LLH; Rajagopalan et al., 2002). This evaluates the skill of the model in capturing
the probability density function (PDF).

3. Rank probability skill score (RPSS; Wilks, 1995). This evaluates the skill of the model in capturing the
categorical probabilities, i.e. the PDF.

The likelihood function (LLH) is applied to measure the skill of forecasting models. Its process is to
categorize predicted values into three categories; below normal, normal and above normal. The ensemble
forecasts falling into these three categories are compared with historical data and then used to develop a skill
score. The likelihood skill score for any given year of forecast is defined as

LLH =

N∏

t=1

P̂j,t

N∏

t=1

Pcj,t

(5)

where N is the number of years to be forecasted, j is the category of the observed value in year t , P̂j,t is the
forecast probability for category j in year t , and Pcj,t is the climatological probability for category j in year
t . Here, we divided the rainfall into three categories at the 33rd and 66th percentiles, so the probabilities of
each of the categories are 1/3 and N is the length of data. The LLH values vary from zero to the number of
categories (i.e. three in this study). A score of zero indicates lack of skill, a score greater than one indicates
that the forecasts have skill in excess of the climatological forecast and a score of three indicates a perfect
forecast.

The ranked probability skill score (RPSS) is also applied to quantify the skill of forecasting models. This
method evaluates the probability of ensemble forecasts falling into many categories (i.e. below average,
average and above average in this study) and compared with historical data. The RPSS score for any given
year is defined as

RPS(p, d) = 1
R − 1

⎡

⎣
(

R∑

i=1

Pi −
R∑

i=1

di

)2
⎤

⎦ (6)

for R mutually exclusive and collectively exhaustive categories (in this case we have three categories, so
R = 3). The vector d (d1, d2, . . ., dR) represents the observation vector such that dR = 1 if the observation
fell in category R or dR = 0 otherwise. The RPSS is then calculated as (e.g. Toth, 2002; Wilks, 1995)

RPSS = 1 − RPS(forecast)
RPS(climatology)

(7)
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RPSS scores vary from +1 to −∞ (i.e. perfect skill to bad skill). Scores above zero indicate improvement
over the climatological forecast.

For the LOCFIT and modified K-NN methods, owing to the small sample size we used polynomial of
order (p = 1, i.e. local linear fit). However, the neighbourhood size was obtained objectively using the GCV
criteria.

6. RESULTS

From the set of predictors (based on SST, SAT, SLP fields and ENSO indices) identified in Section 5, the
optimal subset was found by the combination that gave the best forecast skill. Several formal methods are
available for subset selection, such as stepwise regression, cross-validation metrics, etc. Since the number of
significant predictors is small, in our case almost all combinations were tried out to find the optimal predictor
set. For summer monsoon rainfall, the best set of predictors was found to be the one based on SLP and SST
described in Section 3.3. The land temperatures (SAT) did not seem to improve the skill much. Forecasts
were issued at the beginning of each month starting on 1 April for each year using all three methods. The
predictors are the average values from the preceding season (i.e. preceding 3 months), except for forecasts
issued on 1 July and 1 August, where the SST predictor of MAM and the SLP predictor of the preceding
season are used, as this combination gave the best skill. Thus, the 1 July forecast is based on the SST predictor
of MAM and the SLP predictor of April–June, and the 1 August forecast is based on the SST predictor of
MAM and the SLP predictor of MJJ.

The skill of the forecasts is evaluated using the three skill measures described in Section 5. Model skill is
also compared during high (wet) and low (dry) years. Threshold exceedance probabilities during the extreme
years are estimated and the PDFs of ensembles of a few representative years are also presented.

The skill scores are shown in Figure 4. It can be seen that the skill increases significantly as the forecast lead
time decreases for all the methods. This is intuitive and consistent with expectations. The linear regression
and LOCFIT show similar skill on all three measures. This indicates that, for the most part, the relationship
between the predictors and the rainfall is linear and that linear regression seems appropriate. The modified
K-NN is comparable in performance as the lead time decreases, but its performance is weak early on. This,
we believe, is due to the small sample size of residuals used in resampling. Given that we only have 21 data
points (the data used for forecasting is for the period 1980–2000), K tends to be of the order of 7–8. With
a small K , coupled with the fact that at long leads the relationship between predictors and rainfall is not as
strong; consequently, there is less variety in the ensembles and a bias if the predictors are not very useful,
which leads to poor skill scores.

Notice the significant skill from 1 May onwards, which provides a 2 month lead time that can be very
useful for resources planning and management. This useful long-lead skill, regardless of the method, is quite
impressive.

In order to compare the performance of these models in extreme years, Figure 5(a) and (b) shows the
skill scores for the high (wet) and low (dry) rainfall years defined in Singhrattna (2003). Interestingly,
the nonparametric models (LOCFIT and modified K-NN) seem to show a slight improvement over linear
regression for forecasts starting 1 May in both the wet and dry years and generally for all the skill measures.
This could be explained by the fact that a subtle nonlinear relationship exists between the predictors and the
rainfall at the extremes; hence, there is some advantage in using nonparametric methods. Furthermore, notice
that the skill in wet years is much more than that in the dry years.

PDFs of the ensemble forecasts (solid line) made on 1 August during selected wet and dry years from
the three models are presented along with the climatological PDF (dashed line, which is estimated from the
entire historical record) and the observed values (dotted line) in Figures 6 and 7 respectively. For the wet
years the modified K-NN (Figure 6(a)) shows the ensembles to be shifted to the right of the climatological
PDF. For the low years (especially, 1984 and 1994; Figure 7(b)) it can be seen that the LOCFIT method does
a good job of shifting the forecast ensemble PDF to the left of the climatological PDF relative to the linear
regression.
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Figure 4. Cross-validated skill scores for Thailand summer rainfall forecasts issued on the first of each month from April through to
August using the three ensemble forecast methods. The skill measures, i.e. correlation, LLH and RPSS, are shown in the three plots

Even though the observed values are not in the middle of the ensemble PDFs (as we would like them
to be), this still can provide useful information and skill in terms of threshold exceedance probabilities,
which is one of the key variables for making planning decisions. We chose 700 mm (the 90th percentile
of the data) as a surrogate for wet (or flood) conditions and 400 mm (the 10th percentile of the data)
for dry conditions. From the PDFs of the ensembles forecast on 1 May, the exceedance probabilities are
computed for the selected wet and dry years and shown in Table II. For the wet years the climatological
exceedance probability is 0.10, whereas the ensembles in all the years except 1995 indicate a very high
probability of exceedance of this threshold, thus indicating a wet condition. This information, provided
on 1 May, 3 months ahead of the summer monsoon season, could be very helpful in flood emergency
response planning and management. For the dry years the models show a small non-exceedance probability
of the lower threshold (400 mm) when a higher probability of non-exceedance is expected. This is
consistent with the fact that the models have a low skill in dry years, especially with the 1 May forecasts
(Figure 5(b)). However, we found the skill in these exceedance probabilities to be higher for 1 June, 1
July and 1 August forecasts. It can be seen that the nonparametric models, in general, show a slight
improvement upon the linear regression model. Similar estimates were obtained from forecasts issued in
other months.
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Figure 5. Same as Figure 4, but for (a) wet years and (b) dry years. Correlation measure is not shown owing to small sample size

The threshold exceedance probabilities can be used effectively to plan annual and seasonal reservoir,
emergency response preparedness, floodplain management, cropping strategies, conservation measures, etc.
Furthermore, they can also be used as a surrogate for wetness or dryness and provide probabilistic
information on flooding potential, landslides, etc. and develop optimal response strategies. Lastly, the
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Figure 6. PDF of ensemble forecasts (solid line) and the climatological PDF (dotted line) for three selected wet years (1983, 1988 and
1995) from the three methods: (a) modified K-NN; (b) LOCFIT; (c) linear regression

ensembles of rainfall can be used to drive a water balance model and generate ensembles of stream flows. The
forecasts will provide a useful and powerful tool to water managers in long-term planning that is currently
lacking.

7. SUMMARY

Predictors from large-scale ocean, atmosphere and land variables that have strong correlations with Thailand
summer monsoon have been identified. The predictors are consistent in terms of their physical mechanistic
links to the monsoon. The predictors indicate that rainfall is predictable one to two seasons in advance.
Interestingly, the predictors are related to the monsoon rainfall only during the post-1980 period, when
the monsoon rainfall is correlated with ENSO, as seen in Singhrattna (2003). This suggests the tantalizing
possibility that the ENSO relationship could be modulating the predictability, similar to what is seen in the
case of the Indian monsoon (Krishna Kumar et al., 1995, 1999b). The nonstationarity aspect of the relationship
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Figure 7. Same as Figure 6, but for selected dry years (1984, 1987 and 1994)

between the predictors and Thailand summer rainfall means caution must be exercised, in that the relationships
have to be tested periodically and new predictors identified if necessary.

Two modelling approaches for ensemble forecasts of Thailand summer monsoon are offered: (1) a traditional
linear regression (parametric) and (2) an adapted nonparametric method based on local polynomials. Both the
models exhibit significant skill at 2–5 months’ lead time. The nonparametric method seems to show improved
skill in the extreme years, especially in wet years.

The proposed models for forecasting Thailand summer rainfall make a significant contribution, as no
official forecast models exist to our knowledge. This has tremendous implications for water management,
early warning and preparedness, and also for resources planning in general. Further testing and improvements
of these models are required.
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Table II. Exceedance probabilities for selected wet years and non-exceedance probabil-
ities for selected dry years

Year Probability (%)

Climatology Modified
K-NN

LOCFIT Linear
regression

1983 10.0 81.0 73.5 71.3
1988 10.0 39.9 54.7 33.6
1995 10.0 3.1 4.6 1.1
Dry years
1984 10.0 1.0 1 1
1987 10.0 2.3 3.7 9
1994 10.0 1.0 1.5 1
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